Task allocation and partitioning of social insects

Task allocation and partitioning refers to the way that tasks are chosen, assigned, subdivided, and coordinated (here, within a single colony of social insects). Closely associated are issues of communication that enable these actions to occur. This entry focuses exclusively on social insects. For information on human task allocation and partitioning, see division of labour, task analysis, and workflow.

Contents

Definitions

Introduction

Social living provides a multitude of advantages to its practitioners, including predation risk reduction, environmental buffering, food procurement, and possible mating advantages. The most advanced form of sociality is eusociality, characterized by overlapping generations, cooperative care of the young, and reproductive division of labor, which includes sterility or near-sterility of the overwhelming majority of colony members. With few exceptions, all the practitioners of eusociality are insects of the orders Hymenoptera (ants, bees, and wasps), Isoptera (termites), Thysanoptera (thrips), and Hemiptera (aphids).[3][4] Social insects have been extraordinarily successful ecologically and evolutionarily. This success has at its most pronounced produced colonies 1) having a persistence many times the lifespan of most individuals of the colony, and 2) numbering thousands or even millions of individuals. Social insects can exhibit division of labor with respect to non-reproductive tasks, in addition to the aforementioned reproductive one. In some cases this takes the form of markedly different, alternative morphological development (polymorphism), as in the case of soldier castes in ants, termites, thrips, and aphids, while in other cases it is age-based (temporal polyethism), as with honey bee foragers, who are the oldest members of the colony (with the exception of the queen). Division of labor, large colony sizes, temporally-changing colony needs, and the value of adaptability and efficiency under Darwinian competition, all form a theoretical basis favoring the existence of evolved communication in social insects.[5][6][7] Beyond the rationale, there is well-documented empirical evidence of communication related to tasks; examples include the waggle dance of honey bee foragers, trail marking by ant foragers, and the propagation via pheromones of an alarm state in Africanized honey bees.

Temporal polyethism

Temporal polyethism is a mechanism of task allocation, and is ubiquitous among eusocial insect colonies. Tasks in a colony are allocated among workers based on their age. Newly emerged workers perform tasks within the nest, such as brood care and nest maintenance, and progress to tasks outside the nest, such as foraging, nest defense, and corpse removal as they age. In honeybees, the youngest workers exclusively clean cells, which is then followed by tasks related to brood care and nest maintenance from about 2-11 days of age. From 11- 20 days, they transition to receiving and storing food from foragers, and at about 20 days workers begin to forage.[8] Similar temporal polyethism patterns can be seen in even primitive species of wasps, such as Ropalidia marginata. Young workers feed larvae, and then transition to nest building tasks, followed by foraging.[9] Many species of ants also display this pattern.[10]

Network representation of tasks and communication

Numerous scientists have used a social network approach to model communication in animals, including that related to task performance.[11][12] A network is pictorially represented as a graph, but can equivalently be represented as an adjacency list or adjacency matrix.[13] Traditionally, workers are the nodes of the graph, but Fewell prefers to make the tasks the nodes, with workers as the links.[14][12] O'Donnell has coined the term "worker connectivity" to stand for "communicative interactions that link a colony's workers in a social network and affect task performance".[14] He has pointed out that connectivity provides three adaptive advantages compared to individual direct perception of needs:[14]

  1. It increases both the physical and temporal reach of information. With connectivity, information can travel farther and faster, and additionally can persist longer, including both direct persistence (i.e. through pheromones), memory effects, and by initiating a sequence of events.
  2. It can help overcome task inertia and burnout, and push workers into performing hazardous tasks. For reasons of indirect fitness, this latter stimulus should not be necessary if all workers in the colony are highly related genetically, but that is not always the case.
  3. Key individuals may possess superior knowledge, or have catalytic roles. Examples, respectively, are a sentry who has detected an intruder, or the colony queen.

O'Donnell provides a comprehensive survey, with examples, of factors that have a large bearing on worker connectivity.[14] They include:

Task taxonomy and complexity

Anderson, Franks, and McShea have broken down insect tasks (and subtasks) into a hierarchical taxonomy; their focus is on task partitioning and its complexity implications. They classify tasks as individual, group, team, or partitioned; classification of a task depends on whether there are multiple vs. individual workers, whether there is division of labor, and whether subtasks are done concurrently or sequentially. Note that in their classification, in order for an action to be considered a task, it must contribute positively to inclusive fitness; if it must be combined with other actions to achieve that goal, it is considered to be a subtask. In their simple model, they award 1, 2, or 3 points to the different tasks and subtasks, depending on its above classification. Summing all tasks and subtasks point values down through all levels of nesting allows any task to be given a score that roughly ranks relative complexity of actions.[15] See also the review of task partitioning by Ratnieks and Anderson.[2]

Note: model-building

All models are simplified abstractions of the real-life situation. There exists a basic tradeoff between model precision and parameter precision. A fixed amount of information collected, will, if split amongst the many parameters of an overly precise model, result in at least some of the parameters being represented by inadequate sample sizes.[16] Because of the often limited quantities and limited precision of data from which to calculate parameters values in non-human behavior studies, such models should generally be kept simple. Therefore we generally should not expect models for social insect task allocation or task partitioning to be as elaborate as human workflow ones, for example.

Metrics for division of labor

With increased data, more elaborate metrics for division of labor within the colony become possible. Gorelick and Bertram survey the applicability of metrics taken from a wide range of other fields. They argue that a single output statistic is desirable, to permit comparisons across different population sizes and different numbers of tasks. But they also argue that the input to the function should be a matrix representation (of time spent by each individual on each task), in order to provide the function with better data. They conclude that "... normalized matrix-input generalizations of Shannon's and Simpson's index ... should be the indices of choice when one wants to simultaneously examine division of labor amongst all individuals in a population".[17] Note that these indexes, used as metrics of biodiversity, now find a place measuring division of labor.

See also

References

  1. ^ a b Deborah M. Gordon (1996). "The organization of work in social insect colonies" (PDF). Nature 380 (6570): 121–124. doi:10.1038/380121a0. http://www.stanford.edu/~dmgordon/Gordon1996_Nature.pdf. 
  2. ^ a b Francis L. W. Ratnieks & Carl Anderson (1999). "Task partitioning in insect societies". Insectes Sociaux 47 (2): 95–108. doi:10.1007/s000400050119. 
  3. ^ John R. Krebs & Nicholas B. Davies (1987). An Introduction to Behavioural Ecology (2nd ed.). Blackwell Scientific Publications. p. 291. 
  4. ^ Ross H. Crozier & Pekka Pamilo (1996). "Introduction". Evolution of Social Insect Colonies. Sex Allocation and Kin Selection. Oxford Series in Ecology and Evolution. Oxford University Press. pp. 4–8. ISBN 978-0-19-854942-0. 
  5. ^ Carl Anderson & Daniel W. McShea (2001). "Individual versus social complexity, with particular reference to ant colonies". Biological Reviews 76 (2): 211–237. doi:10.1017/S1464793101005656. PMID 11396847. 
  6. ^ Sasha R. X. Dall, Luc-Alain Giraldeau, Ola Olsson, John M. McNamara & David W. Stephens (2005). "Information and its use by animals in evolutionary ecology" (PDF). Trends in Ecology & Evolution 20 (4): 187–193. doi:10.1016/j.tree.2005.01.010. PMID 16701367. http://eebweb.arizona.edu/faculty/dornhaus/courses/materials/papers/other/Dall%20etal%20information%20benefits%20foraging.pdf. 
  7. ^ Aaron E. Hirsh & Deborah M. Gordon (2001). "Distributed problem solving in social insects". Annals of Mathematics and Artificial Intelligence 31 (1–4): 199–221. doi:10.1023/A:1016651613285. 
  8. ^ Thomas D. Seeley (1982). "Adaptive significance of the age polyethism schedule in honeybee colonies". Behavioral Ecology and Sociobiology 11 (4): 287–293. JSTOR 4599548. 
  9. ^ Dhruba Naug & Raghavendra Gadagkar (1998). "The role of age in temporal polyethism in a primitively eusocial wasp". Behavioral Ecology and Sociobiology 42 (1): 37–47. doi:10.1007/s002650050409. JSTOR 4601416. 
  10. ^ Bert Hölldobler & E. O. Wilson (1990). The Ants. Cambridge, MA: Harvard University Press. ISBN 0-674-04075-9. 
  11. ^ Deborah M. Gordon (2003). "The organization of work in social insect colonies". Complexity 8 (1): 43–46. doi:10.1002/cplx.10048. 
  12. ^ a b Jennifer H. Fewell (2003). "Social insect networks". Science 301 (5461): 1867–1870. doi:10.1126/science.1088945. PMID 14512616. 
  13. ^ Michael Goodrich & Roberto Tamassia (2002). Algorithm Design. Wiley. p. 296. ISBN 978-0-471-38365-9. 
  14. ^ a b c d S. O'Donnell & S. J. Bulova (2007). "Worker connectivity: a review of the design of worker communication systems and their effects on task performance in insect societies". Insectes Sociaux 54 (3): 203–210. doi:10.1007/s00040-007-0945-6. 
  15. ^ Carl Anderson, Nigel R. Franks & Daniel W. McShea (2001). "The complexity and hierarchical structure of tasks in insect societies". Animal Behaviour 62 (4): 643–651. doi:10.1006/anbe.2001.1795. 
  16. ^ Stephen P. Ellner & John Guckenheimer (2006). "Building dynamic models". Dynamic Models in Biology. Princeton University Press. pp. 289–290. ISBN 978-0-691-12589-3. 
  17. ^ R. Gorelick & S. M. Bertram (2007). "Quantifying division of labor: borrowing tools from sociology, sociobiology, information theory, landscape ecology, and biogeography". Insectes Sociaux 54 (2): 105–112. doi:10.1007/s00040-007-0923-z. 

Further reading